Design & Recycling of Fishing Gear
Scoping Study – Preliminary conclusions

Expert workshop, Brussels
19-20 February 2020
Roos Bol
Rijkswaterstaat, The Netherlands
roos.bol@rws.nl
Main results of Scoping Study

- Fishing gear types: marine litter & supply chain
- Design & recycling as a solution:
 1. Collection & logistics
 2. Recycling
 3. Design for recyclability & re-use
 4. Design to reduce impact on the marine environment
 5. Design for better traceability
Annual loss of aquaculture + fishing gear in Europe: **4,000 – 10,000 tonnes**
(Viool et al. 2018)
Main reasons for gear loss

› **Trawl gear**: (un)intentional discarding of net sections / inadequate waste management

› **Passive gear**: extreme weather / currents & conflict with other gear

› **Aquaculture gear**: extreme weather & mismanagement / discarding
Fishing gear distribution

- Bottom & pelagic trawls main gear in **North Sea/Eastern Arctic**
- Passive gear (gillnets) important in **Baltic**, Spain, France
- Bottom trawls & long lines in **Mediterranean**
- In **Bay of Biscay** & Iberian coast: bottom & pelagic trawls, multi-gear (polyvalent), purse seine
- Small scale: pots & traps (UK), drift nets (France)
- Main **aquaculture** countries: Norway, Spain, UK, France
- **Recreational** gear loss important in UK, Germany

Sources: OSPAR questionnaire, STECF (2018), FAO (2019)
Fishing gear suppliers

- **Raw materials** predominantly from overseas
 - Big suppliers such as Euronete and Hampiðjan
 - Also wide range of local suppliers
 - Some online ordering (gillnets, rods & lines)

- **Assembling** generally done locally, in country itself
 - Often tailormade, especially trawl gear
 - Sometimes through local fisheries cooperative
 - To some extent: self-assembling by fishermen
 - Repairs & re-use
Fishing gear supply chain

› Complex supply chains with many actors
› Valuable product stream – high potential for re-use
› Differences between countries

› Recommendations:
 › Perform mapping exercise of supply chain in each country
 › Involve all stakeholders (designers, users, recyclers) in the discussion on minimising marine litter
Design & recycling of fishing gear as a potential solution
1. Collection & logistics

- Challenges for collection:
 - No legal obligation for recycling
 - Lack of port facilities
 - Mismanagement / behaviour

- Logistical challenges:
 - Only 2 main recycling companies in Europe: Plastix & Aquafil
 - Highly selective in material & recycling method
 - High standards on accepted end-of-life gear
 - Result: high effort & costs for pre-processing & transport
1. Collection & logistics

- **Best practice example:** PechPropre, France
 - Diagnosis of current plastic management in fishing
 - Survey of 67 fishing ports

- **Recommendations:**
 - National legislation to support recycling
 - Economic incentives to support logistics
 - Expand possibilities & funding for recycling projects
2. Recycling: materials

> Main plastics:
 - Polypropylene (PP)
 - Polyethylene (PE)
 - Nylon (PA6)
 - PET (in gillnets)

> Other materials:
 - Metals
 - PVC
 - Polystyrene
 - PVDF
 - HMPE (e.g. Dyneema®)
 - Rubber
 - Foams
 - Hazardous materials (lead weights, copper coatings)
2. Recycling: state of play

- **Recycling pathways:**
 - **Steel** (and sometimes lead) - regular metal recycling (all countries)
 - **PP/PE**: floats, lines and nets; single polymer trawl / purse seine nets - mechanical recycling (Plastix Denmark)
 - **PA6 (nylon)**: mostly in gillnets - chemical recycling (solvolysis) and re-threading into yarns (Aquafil Slovenia)
 - **PET**: chemical recycling and re-threading into yarns (Antex Spain)

- **Challenges:**
 - Mix of polymer types requires costly sorting/dismantling
 - Contamination (ALDFG)
 - Materials mixed with hazardous waste (e.g. lead)
 - Quality / market value of recycled material
2. Recycling: best practice examples

› **Icelandic return scheme:**
 - Over 90% of fishing gear recycled
 - Return scheme with fee system
 - Mostly trawls & purse seines

› **Healthy Seas:**
 - Socks made of recycled nylon from Aquafil
 - Using fishing gear recycling as positive branding
2. Recycling: recommendations

› Promote re-use & repairs; increase awareness of materials during repairs
› Clear guidelines for pre-processing & sorting
 › Including: degree of necessary pre-processing
› Examine ways to reduce pre-processing costs
› Investigate potential of colour-coding for polymer separation
› Availability & marketing of high-quality outputs
3. Design for recyclability and re-use

- Several materials cannot be recycled or re-used:
 - **Lead lines** containing a mixture of lead, PP, Dyneema and soft PVC
 - **Mixed materials** difficult to dismantle / separate; e.g. bridle lines, sweep lines, head and foot ropes or towing warps - different polymers, sometimes metal fortification
 - **Treated nets** (e.g. copper or other antifouling): potential toxicity

- Currently **design for functionality** - no waste management considerations

- Design as a potential solution to enhance recycling & re-use
3. Design for recyclability and re-use

› **Recommendations:**

› (National) economic incentive to increase purity (reduced mixture) in gear manufacturing

› Utilise alternatives for copper threads / coating in ropes & lines

› Innovation: develop environmentally friendly coatings

› Innovation: move away from exclusive consideration of functionality towards more circular economy oriented design
4. Design to reduce impact

› Still use of hazardous materials
› Little research on environmentally friendly design
› Off-cuts / discards are a problem (behaviour)
› **Biodegradability** as a solution?
 › Increasing research, but: need to consider fisherman’s perspective
 › Only if loss cannot be prevented!
 › Risk of ‘perverse incentive’
4. Design to reduce impact

- **Best practice examples:**
 - Biodegradable panels / ropes on pots & traps
 - Pilots: DollyRopeFree & DropS

- **Recommendations:**
 - Reduce / replace hazardous materials
 - Increase research & field testing
 - Design criteria to include environmental impact
 - Increase awareness of impacts
 - Economic incentives for enhanced collection of discards on board & in port

Pictures: DollyRopeFree; Wouter Jan Strietman & Dirk Kraak
5. Design for better traceability

› New technologies: e.g. electronic tags, QR codes, colour coding, metal tags, radio beacons

› Gear labelling of material: to easily identify material

› Gear marking for ownership: to ensure traceability

› Challenges:
 – Current lack of standardized approaches
 – Often only portion of gear is lost
 – No legal obligations
5. Design for better traceability

› **Best practice example:** mandatory gear marking of all passive & trawl gear in the UK
 › Fishers easily identified by enforcement agencies
 › Fines for non-compliance & prosecution for violations

› **Recommendations:**
 › Gear marking only if there is chance of loss of larger sections
 › Extend marking to retrievability of lost gear (e.g. echolocation)
 › Investigate marking systems for owner identification
 › Improve legislation & enforcement
Concluding remarks

- Enhanced recycling of fishing gear is one of the solutions
 - To reduce marine litter from intentional discards
 - Challenges remain in logistics & recycling
 - Design modifications are part of the solution

- Workshop: verify & expand recommendations; focus on practical aspects and feasibility

- Recommendations will:
 - Aid OSPAR Contracting Parties to assist fishing gear handlers in the best way possible, and with effective implementation of SUP
 - Support the Commission in development of standard for circular design of fishing gear